Random Assignment of Indivisible Goods under Constraints
Yasushi Kawase,
Hanna Sumita and
Yu Yokoi
Papers from arXiv.org
Abstract:
We investigate the problem of random assignment of indivisible goods, in which each agent has an ordinal preference and a constraint. Our goal is to characterize the conditions under which there always exists a random assignment that simultaneously satisfies efficiency and envy-freeness. The probabilistic serial mechanism ensures the existence of such an assignment for the unconstrained setting. In this paper, we consider a more general setting in which each agent can consume a set of items only if the set satisfies her feasibility constraint. Such constraints must be taken into account in student course placements, employee shift assignments, and so on. We demonstrate that an efficient and envy-free assignment may not exist even for the simple case of partition matroid constraints, where the items are categorized, and each agent demands one item from each category. We then identify special cases in which an efficient and envy-free assignment always exists. For these cases, the probabilistic serial cannot be naturally extended; therefore, we provide mechanisms to find the desired assignment using various approaches.
Date: 2022-08, Revised 2024-12
New Economics Papers: this item is included in nep-des and nep-mic
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2208.07666 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2208.07666
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().