Algorithmic Fairness and Statistical Discrimination
John W. Patty and
Elizabeth Maggie Penn
Papers from arXiv.org
Abstract:
Algorithmic fairness is a new interdisciplinary field of study focused on how to measure whether a process, or algorithm, may unintentionally produce unfair outcomes, as well as whether or how the potential unfairness of such processes can be mitigated. Statistical discrimination describes a set of informational issues that can induce rational (i.e., Bayesian) decision-making to lead to unfair outcomes even in the absence of discriminatory intent. In this article, we provide overviews of these two related literatures and draw connections between them. The comparison illustrates both the conflict between rationality and fairness and the importance of endogeneity (e.g., "rational expectations" and "self-fulfilling prophecies") in defining and pursuing fairness. Taken in concert, we argue that the two traditions suggest a value for considering new fairness notions that explicitly account for how the individual characteristics an algorithm intends to measure may change in response to the algorithm.
Date: 2022-08
New Economics Papers: this item is included in nep-hpe and nep-reg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2208.08341 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2208.08341
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().