Matrix Quantile Factor Model
Xin-Bing Kong,
Yong-Xin Liu,
Long Yu and
Peng Zhao
Papers from arXiv.org
Abstract:
This paper introduces a matrix quantile factor model for matrix-valued data with low-rank structure. We estimate the row and column factor spaces via minimizing the empirical check loss function with orthogonal rotation constraints. We show that the estimates converge at rate $(\min\{p_1p_2,p_2T,p_1T\})^{-1/2}$ in the average Frobenius norm, where $p_1$, $p_2$ and $T$ are the row dimensionality, column dimensionality and length of the matrix sequence, respectively. This rate is faster than that of the quantile estimates via ``flattening" the matrix model into a large vector model. To derive the central limit theorem, we introduce a novel augmented Lagrangian function, which is equivalent to the original constrained empirical check loss minimization problem. Via the equivalence, we prove that the Hessian matrix of the augmented Lagrangian function is locally positive definite, resulting in a locally convex penalized loss function around the true factors and their loadings. This easily leads to a feasible second-order expansion of the score function and readily established central limit theorems of the smoothed estimates of the loadings. We provide three consistent criteria to determine the pair of row and column factor numbers. Extensive simulation studies and an empirical study justify our theory.
Date: 2022-08, Revised 2024-08
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2208.08693 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2208.08693
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).