Large Volatility Matrix Analysis Using Global and National Factor Models
Sung Hoon Choi and
Donggyu Kim
Papers from arXiv.org
Abstract:
Several large volatility matrix inference procedures have been developed, based on the latent factor model. They often assumed that there are a few of common factors, which can account for volatility dynamics. However, several studies have demonstrated the presence of local factors. In particular, when analyzing the global stock market, we often observe that nation-specific factors explain their own country's volatility dynamics. To account for this, we propose the Double Principal Orthogonal complEment Thresholding (Double-POET) method, based on multi-level factor models, and also establish its asymptotic properties. Furthermore, we demonstrate the drawback of using the regular principal orthogonal component thresholding (POET) when the local factor structure exists. We also describe the blessing of dimensionality using Double-POET for local covariance matrix estimation. Finally, we investigate the performance of the Double-POET estimator in an out-of-sample portfolio allocation study using international stocks from 20 financial markets.
Date: 2022-08, Revised 2022-12
New Economics Papers: this item is included in nep-ecm and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2208.12323 Latest version (application/pdf)
Related works:
Journal Article: Large volatility matrix analysis using global and national factor models (2023) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2208.12323
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).