EconPapers    
Economics at your fingertips  
 

Comparing Stochastic Volatility Specifications for Large Bayesian VARs

Joshua Chan

Papers from arXiv.org

Abstract: Large Bayesian vector autoregressions with various forms of stochastic volatility have become increasingly popular in empirical macroeconomics. One main difficulty for practitioners is to choose the most suitable stochastic volatility specification for their particular application. We develop Bayesian model comparison methods -- based on marginal likelihood estimators that combine conditional Monte Carlo and adaptive importance sampling -- to choose among a variety of stochastic volatility specifications. The proposed methods can also be used to select an appropriate shrinkage prior on the VAR coefficients, which is a critical component for avoiding over-fitting in high-dimensional settings. Using US quarterly data of different dimensions, we find that both the Cholesky stochastic volatility and factor stochastic volatility outperform the common stochastic volatility specification. Their superior performance, however, can mostly be attributed to the more flexible priors that accommodate cross-variable shrinkage.

Date: 2022-08
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://arxiv.org/pdf/2208.13255 Latest version (application/pdf)

Related works:
Journal Article: Comparing stochastic volatility specifications for large Bayesian VARs (2023) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2208.13255

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-29
Handle: RePEc:arx:papers:2208.13255