RNN(p) for Power Consumption Forecasting
Roberto Baviera and
Pietro Manzoni
Papers from arXiv.org
Abstract:
An elementary Recurrent Neural Network that operates on p time lags, called an RNN(p), is the natural generalisation of a linear autoregressive model ARX(p). It is a powerful forecasting tool for variables displaying inherent seasonal patterns across multiple time scales, as is often observed in energy, economic, and financial time series. The architecture of RNN(p) models, characterised by structured feedbacks across time lags, enables the design of efficient training strategies. We conduct a comparative study of learning algorithms for these models, providing a rigorous analysis of their computational complexity and training performance. We present two applications of RNN(p) models in power consumption forecasting, a key domain within the energy sector where accurate forecasts inform both operational and financial decisions. Experimental results show that RNN(p) models achieve excellent forecasting accuracy while maintaining a high degree of interpretability. These features make them well-suited for decision-making in energy markets and other fintech applications where reliable predictions play a significant economic role.
Date: 2022-09, Revised 2025-11
New Economics Papers: this item is included in nep-big, nep-cmp, nep-ene and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2209.01378 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2209.01378
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().