Predict stock prices with ARIMA and LSTM
Ruochen Xiao,
Yingying Feng,
Lei Yan and
Yihan Ma
Papers from arXiv.org
Abstract:
MAE, MSE and RMSE performance indicators are used to analyze the performance of different stocks predicted by LSTM and ARIMA models in this paper. 50 listed company stocks from finance.yahoo.com are selected as the research object in the experiments. The dataset used in this work consists of the highest price on transaction days, corresponding to the period from 01 January 2010 to 31 December 2018. For LSTM model, the data from 01 January 2010 to 31 December 2015 are selected as the training set, the data from 01 January 2016 to 31 December 2017 as the validation set and the data from 01 January 2018 to 31 December 2018 as the test set. In term of ARIMA model, the data from 01 January 2016 to 31 December 2017 are selected as the training set, and the data from 01 January 2018 to 31 December 2018 as the test set. For both models, 60 days of data are used to predict the next day. After analysis, it is suggested that both ARIMA and LSTM models can predict stock prices, and the prediction results are generally consistent with the actual results;and LSTM has better performance in predicting stock prices(especially in expressing stock price changes), while the application of ARIMA is more convenient.
Date: 2022-08
New Economics Papers: this item is included in nep-ets, nep-fmk and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2209.02407 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2209.02407
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).