EconPapers    
Economics at your fingertips  
 

Interpreting and predicting the economy flows: A time-varying parameter global vector autoregressive integrated the machine learning model

Yukang Jiang, Xueqin Wang, Zhixi Xiong, Haisheng Yang and Ting Tian

Papers from arXiv.org

Abstract: The paper proposes a time-varying parameter global vector autoregressive (TVP-GVAR) framework for predicting and analysing developed region economic variables. We want to provide an easily accessible approach for the economy application settings, where a variety of machine learning models can be incorporated for out-of-sample prediction. The LASSO-type technique for numerically efficient model selection of mean squared errors (MSEs) is selected. We show the convincing in-sample performance of our proposed model in all economic variables and relatively high precision out-of-sample predictions with different-frequency economic inputs. Furthermore, the time-varying orthogonal impulse responses provide novel insights into the connectedness of economic variables at critical time points across developed regions. We also derive the corresponding asymptotic bands (the confidence intervals) for orthogonal impulse responses function under standard assumptions.

Date: 2022-07
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2209.05998 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2209.05998

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2209.05998