On the Trail of Lost Pennies: player-funded tug-of-war on the integers
Alan Hammond
Papers from arXiv.org
Abstract:
We study random-turn resource-allocation games. In the Trail of Lost Pennies, a counter moves on $\mathbb{Z}$. At each turn, Maxine stakes $a \in [0,\infty)$ and Mina $b \in [0,\infty)$. The counter $X$ then moves adjacently, to the right with probability $\tfrac{a}{a+b}$. If $X_i \to -\infty$ in this infinte-turn game, Mina receives one unit, and Maxine zero; if $X_i \to \infty$, then these receipts are zero and $x$. Thus the net receipt to a given player is $-A+B$, where $A$ is the sum of her stakes, and $B$ is her terminal receipt. The game was inspired by unbiased tug-of-war in~[PSSW] from 2009 but in fact closely resembles the original version of tug-of-war, introduced [HarrisVickers87] in the economics literature in 1987. We show that the game has surprising features. For a natural class of strategies, Nash equilibria exist precisely when $x$ lies in $[\lambda,\lambda^{-1}]$, for a certain $\lambda \in (0,1)$. We indicate that $\lambda$ is remarkably close to one, proving that $\lambda \leq 0.999904$ and presenting clear numerical evidence that $\lambda \geq 1 - 10^{-4}$. For each $x \in [\lambda,\lambda^{-1}]$, we find countably many Nash equilibria. Each is roughly characterized by an integral {\em battlefield} index: when the counter is nearby, both players stake intensely, with rapid but asymmetric decay in stakes as it moves away. Our results advance premises [HarrisVickers87,Konrad12] for fund management and the incentive-outcome relation that plausibly hold for many player-funded stake-governed games. Alongside a companion treatment [HP22] of games with allocated budgets, we thus offer a detailed mathematical treatment of an illustrative class of tug-of-war games. We also review the separate developments of tug-of-war in economics and mathematics in the hope that mathematicians direct further attention to tug-of-war in its original resource-allocation guise.
Date: 2022-09, Revised 2023-04
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2209.07451 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2209.07451
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().