Efficient Integrated Volatility Estimation in the Presence of Infinite Variation Jumps via Debiased Truncated Realized Variations
B. Cooper Boniece,
Jos\'e E. Figueroa-L\'opez and
Yuchen Han
Papers from arXiv.org
Abstract:
Statistical inference for stochastic processes based on high-frequency observations has been an active research area for more than two decades. One of the most well-known and widely studied problems has been the estimation of the quadratic variation of the continuous component of an It\^o semimartingale with jumps. Several rate- and variance-efficient estimators have been proposed in the literature when the jump component is of bounded variation. However, to date, very few methods can deal with jumps of unbounded variation. By developing new high-order expansions of the truncated moments of a locally stable L\'evy process, we propose a new rate- and variance-efficient volatility estimator for a class of It\^o semimartingales whose jumps behave locally like those of a stable L\'evy process with Blumenthal-Getoor index $Y\in (1,8/5)$ (hence, of unbounded variation). The proposed method is based on a two-step debiasing procedure for the truncated realized quadratic variation of the process and can also cover the case $Y
Date: 2022-09, Revised 2024-04
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2209.10128 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2209.10128
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().