Anomaly Detection on Financial Time Series by Principal Component Analysis and Neural Networks
St\'ephane Cr\'epey,
Lehdili Noureddine,
Nisrine Madhar and
Maud Thomas
Additional contact information
St\'ephane Cr\'epey: LPSM
Lehdili Noureddine: LPSM
Nisrine Madhar: LPSM
Maud Thomas: LPSM
Papers from arXiv.org
Abstract:
A major concern when dealing with financial time series involving a wide variety ofmarket risk factors is the presence of anomalies. These induce a miscalibration of the models used toquantify and manage risk, resulting in potential erroneous risk measures. We propose an approachthat aims to improve anomaly detection in financial time series, overcoming most of the inherentdifficulties. Valuable features are extracted from the time series by compressing and reconstructingthe data through principal component analysis. We then define an anomaly score using a feedforwardneural network. A time series is considered to be contaminated when its anomaly score exceeds agiven cutoff value. This cutoff value is not a hand-set parameter but rather is calibrated as a neuralnetwork parameter throughout the minimization of a customized loss function. The efficiency of theproposed approach compared to several well-known anomaly detection algorithms is numericallydemonstrated on both synthetic and real data sets, with high and stable performance being achievedwith the PCA NN approach. We show that value-at-risk estimation errors are reduced when theproposed anomaly detection model is used with a basic imputation approach to correct the anomaly.
Date: 2022-09, Revised 2022-10
New Economics Papers: this item is included in nep-big, nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2209.11686 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2209.11686
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().