EconPapers    
Economics at your fingertips  
 

Multilevel Monte Carlo and its Applications in Financial Engineering

Devang Sinha and Siddhartha P. Chakrabarty

Papers from arXiv.org

Abstract: In this article, we present a review of the recent developments on the topic of Multilevel Monte Carlo (MLMC) algorithm, in the paradigm of applications in financial engineering. We specifically focus on the recent studies conducted in two subareas, namely, option pricing and financial risk management. For the former, the discussion involves incorporation of the importance sampling algorithm, in conjunction with the MLMC estimator, thereby constructing a hybrid algorithm in order to achieve reduction for the overall variance of the estimator. In case of the latter, we discuss the studies carried out in order to construct an efficient algorithm in order to estimate the risk measures of Value-at-Risk (VaR) and Conditional Var (CVaR), in an efficient manner. In this regard, we briefly discuss the motivation and the construction of an adaptive sampling algorithm with an aim to efficiently estimate the nested expectation, which, in general is computationally expensive.

Date: 2022-09
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2209.14549 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2209.14549

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2209.14549