A quickest detection problem with false negatives
Tiziano De Angelis,
Jhanvi Garg and
Quan Zhou
Papers from arXiv.org
Abstract:
We formulate and solve a variant of the quickest detection problem which features false negatives. A standard Brownian motion acquires a drift at an independent exponential random time which is not directly observable. Based on the observation in continuous time of the sample path of the process, an optimizer must detect the drift as quickly as possible after it has appeared. The optimizer can inspect the system multiple times upon payment of a fixed cost per inspection. If a test is performed on the system before the drift has appeared then, naturally, the test will return a negative outcome. However, if a test is performed after the drift has appeared, then the test may fail to detect it and return a false negative with probability $\epsilon\in(0,1)$. The optimisation ends when the drift is eventually detected. The problem is formulated mathematically as an optimal multiple stopping problem, and it is shown to be equivalent to a recursive optimal stopping problem. Exploiting such connection and free boundary methods we find explicit formulae for the expected cost and the optimal strategy. We also show that when $\epsilon = 0$ our expected cost is an affine transformation of the one in Shiryaev's classical optimal detection problem with a rescaled model parameter.
Date: 2022-10, Revised 2025-02
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2210.01844 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2210.01844
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).