EconPapers    
Economics at your fingertips  
 

Monte-Carlo Estimation of CoVaR

Weihuan Huang, Nifei Lin and L. Jeff Hong

Papers from arXiv.org

Abstract: ${\rm CoVaR}$ is one of the most important measures of financial systemic risks. It is defined as the risk of a financial portfolio conditional on another financial portfolio being at risk. In this paper we first develop a Monte-Carlo simulation-based batching estimator of CoVaR and study its consistency and asymptotic normality. We show that the optimal rate of convergence of the batching estimator is $n^{-1/3}$, where $n$ is the sample size. We then develop an importance-sampling inspired estimator under the delta-gamma approximations to the portfolio losses, and we show that the rate of convergence of the estimator is $n^{-1/2}$. Numerical experiments support our theoretical findings and show that both estimators work well.

Date: 2022-10
New Economics Papers: this item is included in nep-ecm and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2210.06148 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2210.06148

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2210.06148