A Design-Based Riesz Representation Framework for Randomized Experiments
Christopher Harshaw,
Fredrik S\"avje and
Yitan Wang
Papers from arXiv.org
Abstract:
We describe a new design-based framework for drawing causal inference in randomized experiments. Causal effects in the framework are defined as linear functionals evaluated at potential outcome functions. Knowledge and assumptions about the potential outcome functions are encoded as function spaces. This makes the framework expressive, allowing experimenters to formulate and investigate a wide range of causal questions. We describe a class of estimators for estimands defined using the framework and investigate their properties. The construction of the estimators is based on the Riesz representation theorem. We provide necessary and sufficient conditions for unbiasedness and consistency. Finally, we provide conditions under which the estimators are asymptotically normal, and describe a conservative variance estimator to facilitate the construction of confidence intervals for the estimands.
Date: 2022-10, Revised 2022-10
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2210.08698 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2210.08698
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().