EconPapers    
Economics at your fingertips  
 

Measure-valued processes for energy markets

Christa Cuchiero, Luca Di Persio, Francesco Guida and Sara Svaluto-Ferro

Papers from arXiv.org

Abstract: We introduce a framework that allows to employ (non-negative) measure-valued processes for energy market modeling, in particular for electricity and gas futures. Interpreting the process' spatial structure as time to maturity, we show how the Heath-Jarrow-Morton approach can be translated to this framework, thus guaranteeing arbitrage free modeling in infinite dimensions. We derive an analog to the HJM-drift condition and then treat in a Markovian setting existence of non-negative measure-valued diffusions that satisfy this condition. To analyze mathematically convenient classes we build on Cuchiero et al. (2021) and consider measure-valued polynomial and affine diffusions, where we can precisely specify the diffusion part in terms of continuous functions satisfying certain admissibility conditions. For calibration purposes these functions can then be parameterized by neural networks yielding measure-valued analogs of neural SPDEs. By combining Fourier approaches or the moment formula with stochastic gradient descent methods, this then allows for tractable calibration procedures which we also test by way of example on market data. We also sketch how measure-valued processes can be applied in the context of renewable energy production modeling.

Date: 2022-10
New Economics Papers: this item is included in nep-ene
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2210.09331 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2210.09331

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2210.09331