Estimation of Heterogeneous Treatment Effects Using a Conditional Moment Based Approach
Xiaolin Sun
Papers from arXiv.org
Abstract:
We propose a new estimator for heterogeneous treatment effects in a partially linear model (PLM) with multiple exogenous covariates and a potentially endogenous treatment variable. Our approach integrates a Robinson transformation to handle the nonparametric component, the Smooth Minimum Distance (SMD) method to leverage conditional mean independence restrictions, and a Neyman-Orthogonalized first-order condition (FOC). By employing regularized model selection techniques like the Lasso method, our estimator accommodates numerous covariates while exhibiting reduced bias, consistency, and asymptotic normality. Simulations demonstrate its robust performance with diverse instrument sets compared to traditional GMM-type estimators. Applying this method to estimate Medicaid's heterogeneous treatment effects from the Oregon Health Insurance Experiment reveals more robust and reliable results than conventional GMM approaches.
Date: 2022-10, Revised 2024-10
New Economics Papers: this item is included in nep-big, nep-dcm and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2210.15829 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2210.15829
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).