EconPapers    
Economics at your fingertips  
 

Estimation of Heterogeneous Treatment Effects Using a Conditional Moment Based Approach

Xiaolin Sun

Papers from arXiv.org

Abstract: We propose a new estimator for heterogeneous treatment effects in a partially linear model (PLM) with multiple exogenous covariates and a potentially endogenous treatment variable. Our approach integrates a Robinson transformation to handle the nonparametric component, the Smooth Minimum Distance (SMD) method to leverage conditional mean independence restrictions, and a Neyman-Orthogonalized first-order condition (FOC). By employing regularized model selection techniques like the Lasso method, our estimator accommodates numerous covariates while exhibiting reduced bias, consistency, and asymptotic normality. Simulations demonstrate its robust performance with diverse instrument sets compared to traditional GMM-type estimators. Applying this method to estimate Medicaid's heterogeneous treatment effects from the Oregon Health Insurance Experiment reveals more robust and reliable results than conventional GMM approaches.

Date: 2022-10, Revised 2024-10
New Economics Papers: this item is included in nep-big, nep-dcm and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2210.15829 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2210.15829

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2210.15829