EconPapers    
Economics at your fingertips  
 

Non-Robustness of the Cluster-Robust Inference: with a Proposal of a New Robust Method

Yuya Sasaki and Yulong Wang

Papers from arXiv.org

Abstract: The conventional cluster-robust (CR) standard errors may not be robust. They are vulnerable to data that contain a small number of large clusters. When a researcher uses the 51 states in the U.S. as clusters, the largest cluster (California) consists of about 10% of the total sample. Such a case in fact violates the assumptions under which the widely used CR methods are guaranteed to work. We formally show that the conventional CR methods fail if the distribution of cluster sizes follows a power law with exponent less than two. Besides the example of 51 state clusters, some examples are drawn from a list of recent original research articles published in a top journal. In light of these negative results about the existing CR methods, we propose a weighted CR (WCR) method as a simple fix. Simulation studies support our arguments that the WCR method is robust while the conventional CR methods are not.

Date: 2022-10, Revised 2025-01
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://arxiv.org/pdf/2210.16991 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2210.16991

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2210.16991