Rating Triggers for Collateral-Inclusive XVA via Machine Learning and SDEs on Lie Groups
Kevin Kamm and
Michelle Muniz
Papers from arXiv.org
Abstract:
In this paper, we model the rating process of an entity by using a geometrical approach. We model rating transitions as an SDE on a Lie group. Specifically, we focus on calibrating the model to both historical data (rating transition matrices) and market data (CDS quotes) and compare the most popular choices of changes of measure to switch from the historical probability to the risk-neutral one. For this, we show how the classical Girsanov theorem can be applied in the Lie group setting. Moreover, we overcome some of the imperfections of rating matrices published by rating agencies, which are computed with the cohort method, by using a novel Deep Learning approach. This leads to an improvement of the entire scheme and makes the model more robust for applications. We apply our model to compute bilateral credit and debit valuation adjustments of a netting set under a CSA with thresholds depending on ratings of the two parties.
Date: 2022-11
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2211.00326 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2211.00326
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().