EconPapers    
Economics at your fingertips  
 

Boosted p-Values for High-Dimensional Vector Autoregression

Xiao Huang

Papers from arXiv.org

Abstract: Assessing the statistical significance of parameter estimates is an important step in high-dimensional vector autoregression modeling. Using the least-squares boosting method, we compute the p-value for each selected parameter at every boosting step in a linear model. The p-values are asymptotically valid and also adapt to the iterative nature of the boosting procedure. Our simulation experiment shows that the p-values can keep false positive rate under control in high-dimensional vector autoregressions. In an application with more than 100 macroeconomic time series, we further show that the p-values can not only select a sparser model with good prediction performance but also help control model stability. A companion R package boostvar is developed.

Date: 2022-11, Revised 2023-03
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2211.02215 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2211.02215

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2211.02215