Fast, Robust Inference for Linear Instrumental Variables Models using Self-Normalized Moments
Eric Gautier and
Christiern Rose
Additional contact information
Eric Gautier: TSE
Papers from arXiv.org
Abstract:
We propose and implement an approach to inference in linear instrumental variables models which is simultaneously robust and computationally tractable. Inference is based on self-normalization of sample moment conditions, and allows for (but does not require) many (relative to the sample size), weak, potentially invalid or potentially endogenous instruments, as well as for many regressors and conditional heteroskedasticity. Our coverage results are uniform and can deliver a small sample guarantee. We develop a new computational approach based on semidefinite programming, which we show can equally be applied to rapidly invert existing tests (e.g,. AR, LM, CLR, etc.).
Date: 2022-11, Revised 2022-11
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2211.02249 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2211.02249
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().