EconPapers    
Economics at your fingertips  
 

Optimal Scoring Rules for Multi-dimensional Effort

Jason D. Hartline, Liren Shan, Yingkai Li and Yifan Wu

Papers from arXiv.org

Abstract: This paper develops a framework for the design of scoring rules to optimally incentivize an agent to exert a multi-dimensional effort. This framework is a generalization to strategic agents of the classical knapsack problem (cf. Briest, Krysta, and V\"ocking, 2005, Singer, 2010) and it is foundational to applying algorithmic mechanism design to the classroom. The paper identifies two simple families of scoring rules that guarantee constant approximations to the optimal scoring rule. The truncated separate scoring rule is the sum of single dimensional scoring rules that is truncated to the bounded range of feasible scores. The threshold scoring rule gives the maximum score if reports exceed a threshold and zero otherwise. Approximate optimality of one or the other of these rules is similar to the bundling or selling separately result of Babaioff, Immorlica, Lucier, and Weinberg (2014). Finally, we show that the approximate optimality of the best of those two simple scoring rules is robust when the agent's choice of effort is made sequentially.

Date: 2022-11, Revised 2023-06
New Economics Papers: this item is included in nep-des and nep-mic
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2211.03302 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2211.03302

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2211.03302