A deep solver for BSDEs with jumps
Kristoffer Andersson,
Alessandro Gnoatto,
Marco Patacca and
Athena Picarelli
Papers from arXiv.org
Abstract:
The aim of this work is to propose an extension of the deep solver by Han, Jentzen, E (2018) to the case of forward backward stochastic differential equations (FBSDEs) with jumps. As in the aforementioned solver, starting from a discretized version of the FBSDE and parametrizing the (high dimensional) control processes by means of a family of artificial neural networks (ANNs), the FBSDE is viewed as a model-based reinforcement learning problem and the ANN parameters are fitted so as to minimize a prescribed loss function. We take into account both finite and infinite jump activity by introducing, in the latter case, an approximation with finitely many jumps of the forward process. We successfully apply our algorithm to option pricing problems in low and high dimension and discuss the applicability in the context of counterparty credit risk.
Date: 2022-11, Revised 2024-11
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://arxiv.org/pdf/2211.04349 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2211.04349
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().