EconPapers    
Economics at your fingertips  
 

Robust estimation for Threshold Autoregressive Moving-Average models

Greta Goracci, Davide Ferrari, Simone Giannerini and Francesco Ravazzolo

Papers from arXiv.org

Abstract: Threshold autoregressive moving-average (TARMA) models are popular in time series analysis due to their ability to parsimoniously describe several complex dynamical features. However, neither theory nor estimation methods are currently available when the data present heavy tails or anomalous observations, which is often the case in applications. In this paper, we provide the first theoretical framework for robust M-estimation for TARMA models and also study its practical relevance. Under mild conditions, we show that the robust estimator for the threshold parameter is super-consistent, while the estimators for autoregressive and moving-average parameters are strongly consistent and asymptotically normal. The Monte Carlo study shows that the M-estimator is superior, in terms of both bias and variance, to the least squares estimator, which can be heavily affected by outliers. The findings suggest that robust M-estimation should be generally preferred to the least squares method. Finally, we apply our methodology to a set of commodity price time series; the robust TARMA fit presents smaller standard errors and leads to superior forecasting accuracy compared to the least squares fit. The results support the hypothesis of a two-regime, asymmetric nonlinearity around zero, characterised by slow expansions and fast contractions.

Date: 2022-11
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2211.08205 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2211.08205

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2211.08205