EconPapers    
Economics at your fingertips  
 

Zero-Sum Stochastic Stackelberg Games

Denizalp Goktas, Jiayi Zhao and Amy Greenwald

Papers from arXiv.org

Abstract: Zero-sum stochastic games have found important applications in a variety of fields, from machine learning to economics. Work on this model has primarily focused on the computation of Nash equilibrium due to its effectiveness in solving adversarial board and video games. Unfortunately, a Nash equilibrium is not guaranteed to exist in zero-sum stochastic games when the payoffs at each state are not convex-concave in the players' actions. A Stackelberg equilibrium, however, is guaranteed to exist. Consequently, in this paper, we study zero-sum stochastic Stackelberg games. Going beyond known existence results for (non-stationary) Stackelberg equilibria, we prove the existence of recursive (i.e., Markov perfect) Stackelberg equilibria (recSE) in these games, provide necessary and sufficient conditions for a policy profile to be a recSE, and show that recSE can be computed in (weakly) polynomial time via value iteration. Finally, we show that zero-sum stochastic Stackelberg games can model the problem of pricing and allocating goods across agents and time. More specifically, we propose a zero-sum stochastic Stackelberg game whose recSE correspond to the recursive competitive equilibria of a large class of stochastic Fisher markets. We close with a series of experiments that showcase how our methodology can be used to solve the consumption-savings problem in stochastic Fisher markets.

Date: 2022-11
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2211.13847 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2211.13847

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2211.13847