Bayesian Multivariate Quantile Regression with alternative Time-varying Volatility Specifications
Matteo Iacopini,
Francesco Ravazzolo and
Luca Rossini
Papers from arXiv.org
Abstract:
This article proposes a novel Bayesian multivariate quantile regression to forecast the tail behavior of energy commodities, where the homoskedasticity assumption is relaxed to allow for time-varying volatility. In particular, we exploit the mixture representation of the multivariate asymmetric Laplace likelihood and the Cholesky-type decomposition of the scale matrix to introduce stochastic volatility and GARCH processes and then provide an efficient MCMC to estimate them. The proposed models outperform the homoskedastic benchmark mainly when predicting the distribution's tails. We provide a model combination using a quantile score-based weighting scheme, which leads to improved performances, notably when no single model uniformly outperforms the other across quantiles, time, or variables.
Date: 2022-11, Revised 2024-08
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2211.16121 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2211.16121
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().