Geographical balancing of wind power decreases storage needs in a 100% renewable European power sector
Alexander Roth and
Wolf-Peter Schill
Papers from arXiv.org
Abstract:
To reduce greenhouse gas emissions, many countries plan to massively expand wind power and solar photovoltaic capacities. These variable renewable energy sources require additional flexibility in the power sector. Both geographical balancing enabled by interconnection and electricity storage can provide such flexibility. In a 100% renewable energy scenario of twelve central European countries, we investigate how geographical balancing between countries reduces the need for electricity storage. Our principal contribution is to separate and quantify the different factors at play. Applying a capacity expansion model and a factorization method, we disentangle the effect of interconnection on optimal storage capacities through distinct factors: differences in countries' solar PV and wind power availability patterns, load profiles, as well as hydropower and bioenergy capacity portfolios. Results show that interconnection reduces storage needs by around 30% in contrast to a scenario without interconnection. Differences in wind power profiles between countries explain around 80% of that effect.
Date: 2022-11, Revised 2023-06
New Economics Papers: this item is included in nep-ene and nep-env
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/2211.16419 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2211.16419
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().