EconPapers    
Economics at your fingertips  
 

Weak error estimates for rough volatility models

Peter K. Friz, William Salkeld and Thomas Wagenhofer

Papers from arXiv.org

Abstract: We consider a class of stochastic processes with rough stochastic volatility, examples of which include the rough Bergomi and rough Stein-Stein model, that have gained considerable importance in quantitative finance. A basic question for such (non-Markovian) models concerns efficient numerical schemes. While strong rates are well understood (order $H$), we tackle here the intricate question of weak rates. Our main result asserts that the weak rate, for a reasonably large class of test function, is essentially of order $\min \{ 3H+\tfrac12, 1 \}$ where $H \in (0,1/2]$ is the Hurst parameter of the fractional Brownian motion that underlies the rough volatility process. Interestingly, the phase transition at $H=1/6$ is related to the correlation between the two driving factors, and thus gives additional meaning to a quantity already of central importance in stochastic volatility modelling.Our results are complemented by a lower bound which show that the obtained weak rate is indeed optimal.

Date: 2022-12, Revised 2024-08
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2212.01591 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2212.01591

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2212.01591