EconPapers    
Economics at your fingertips  
 

Optimal Model Selection in RDD and Related Settings Using Placebo Zones

Nathan Kettlewell and Peter Siminski

Papers from arXiv.org

Abstract: We propose a new model-selection algorithm for Regression Discontinuity Design, Regression Kink Design, and related IV estimators. Candidate models are assessed within a 'placebo zone' of the running variable, where the true effects are known to be zero. The approach yields an optimal combination of bandwidth, polynomial, and any other choice parameters. It can also inform choices between classes of models (e.g. RDD versus cohort-IV) and any other choices, such as covariates, kernel, or other weights. We outline sufficient conditions under which the approach is asymptotically optimal. The approach also performs favorably under more general conditions in a series of Monte Carlo simulations. We demonstrate the approach in an evaluation of changes to Minimum Supervised Driving Hours in the Australian state of New South Wales. We also re-evaluate evidence on the effects of Head Start and Minimum Legal Drinking Age. Our Stata commands implement the procedure and compare its performance to other approaches.

Date: 2022-12
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://arxiv.org/pdf/2212.04043 Latest version (application/pdf)

Related works:
Working Paper: Optimal Model Selection in RDD and Related Settings Using Placebo Zones (2020) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2212.04043

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-30
Handle: RePEc:arx:papers:2212.04043