EconPapers    
Economics at your fingertips  
 

Lie detection algorithms attract few users but vastly increase accusation rates

Alicia von Schenk, Victor Klockmann, Jean-Fran\c{c}ois Bonnefon, Iyad Rahwan and Nils K\"obis

Papers from arXiv.org

Abstract: People are not very good at detecting lies, which may explain why they refrain from accusing others of lying, given the social costs attached to false accusations - both for the accuser and the accused. Here we consider how this social balance might be disrupted by the availability of lie-detection algorithms powered by Artificial Intelligence. Will people elect to use lie detection algorithms that perform better than humans, and if so, will they show less restraint in their accusations? We built a machine learning classifier whose accuracy (67\%) was significantly better than human accuracy (50\%) in a lie-detection task and conducted an incentivized lie-detection experiment in which we measured participants' propensity to use the algorithm, as well as the impact of that use on accusation rates. We find that the few people (33\%) who elect to use the algorithm drastically increase their accusation rates (from 25\% in the baseline condition up to 86% when the algorithm flags a statement as a lie). They make more false accusations (18pp increase), but at the same time, the probability of a lie remaining undetected is much lower in this group (36pp decrease). We consider individual motivations for using lie detection algorithms and the social implications of these algorithms.

Date: 2022-12
New Economics Papers: this item is included in nep-big, nep-cmp, nep-exp and nep-law
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2212.04277 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2212.04277

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2212.04277