Robust Inference in High Dimensional Linear Model with Cluster Dependence
Ng Cheuk Fai
Papers from arXiv.org
Abstract:
Cluster standard error (Liang and Zeger, 1986) is widely used by empirical researchers to account for cluster dependence in linear model. It is well known that this standard error is biased. We show that the bias does not vanish under high dimensional asymptotics by revisiting Chesher and Jewitt (1987)'s approach. An alternative leave-cluster-out crossfit (LCOC) estimator that is unbiased, consistent and robust to cluster dependence is provided under high dimensional setting introduced by Cattaneo, Jansson and Newey (2018). Since LCOC estimator nests the leave-one-out crossfit estimator of Kline, Saggio and Solvsten (2019), the two papers are unified. Monte Carlo comparisons are provided to give insights on its finite sample properties. The LCOC estimator is then applied to Angrist and Lavy's (2009) study of the effects of high school achievement award and Donohue III and Levitt's (2001) study of the impact of abortion on crime.
Date: 2022-12
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2212.05554 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2212.05554
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().