Predicting Companies' ESG Ratings from News Articles Using Multivariate Timeseries Analysis
Tanja Aue,
Adam Jatowt and
Michael F\"arber
Papers from arXiv.org
Abstract:
Environmental, social and governance (ESG) engagement of companies moved into the focus of public attention over recent years. With the requirements of compulsory reporting being implemented and investors incorporating sustainability in their investment decisions, the demand for transparent and reliable ESG ratings is increasing. However, automatic approaches for forecasting ESG ratings have been quite scarce despite the increasing importance of the topic. In this paper, we build a model to predict ESG ratings from news articles using the combination of multivariate timeseries construction and deep learning techniques. A news dataset for about 3,000 US companies together with their ratings is also created and released for training. Through the experimental evaluation we find out that our approach provides accurate results outperforming the state-of-the-art, and can be used in practice to support a manual determination or analysis of ESG ratings.
Date: 2022-11
New Economics Papers: this item is included in nep-big, nep-env, nep-fmk and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2212.11765 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2212.11765
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().