Deep Runge-Kutta schemes for BSDEs
Jean-Fran\c{c}ois Chassagneux,
Junchao Chen and
Noufel Frikha
Papers from arXiv.org
Abstract:
We propose a new probabilistic scheme which combines deep learning techniques with high order schemes for backward stochastic differential equations belonging to the class of Runge-Kutta methods to solve high-dimensional semi-linear parabolic partial differential equations. Our approach notably extends the one introduced in [Hure Pham Warin 2020] for the implicit Euler scheme to schemes which are more efficient in terms of discrete-time error. We establish some convergence results for our implemented schemes under classical regularity assumptions. We also illustrate the efficiency of our method for different schemes of order one, two and three. Our numerical results indicate that the Crank-Nicolson schemes is a good compromise in terms of precision, computational cost and numerical implementation.
Date: 2022-12
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2212.14372 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2212.14372
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().