Empirical Bayes When Estimation Precision Predicts Parameters
Jiafeng Chen
Papers from arXiv.org
Abstract:
Gaussian empirical Bayes methods usually maintain a precision independence assumption: The unknown parameters of interest are independent from the known standard errors of the estimates. This assumption is often theoretically questionable and empirically rejected. This paper proposes to model the conditional distribution of the parameter given the standard errors as a flexibly parametrized location-scale family of distributions, leading to a family of methods that we call CLOSE. The CLOSE framework unifies and generalizes several proposals under precision dependence. We argue that the most flexible member of the CLOSE family is a minimalist and computationally efficient default for accounting for precision dependence. We analyze this method and show that it is competitive in terms of the regret of subsequent decisions rules. Empirically, using CLOSE leads to sizable gains for selecting high-mobility Census tracts.
Date: 2022-12, Revised 2024-12
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://arxiv.org/pdf/2212.14444 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2212.14444
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().