EconPapers    
Economics at your fingertips  
 

Inference for Large Panel Data with Many Covariates

Markus Pelger and Jiacheng Zou

Papers from arXiv.org

Abstract: This paper proposes a novel testing procedure for selecting a sparse set of covariates that explains a large dimensional panel. Our selection method provides correct false detection control while having higher power than existing approaches. We develop the inferential theory for large panels with many covariates by combining post-selection inference with a novel multiple testing adjustment. Our data-driven hypotheses are conditional on the sparse covariate selection. We control for family-wise error rates for covariate discovery for large cross-sections. As an easy-to-use and practically relevant procedure, we propose Panel-PoSI, which combines the data-driven adjustment for panel multiple testing with valid post-selection p-values of a generalized LASSO, that allows us to incorporate priors. In an empirical study, we select a small number of asset pricing factors that explain a large cross-section of investment strategies. Our method dominates the benchmarks out-of-sample due to its better size and power.

Date: 2022-12, Revised 2023-03
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2301.00292 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2301.00292

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2301.00292