EconPapers    
Economics at your fingertips  
 

Statistical Learning with Sublinear Regret of Propagator Models

Eyal Neuman and Yufei Zhang

Papers from arXiv.org

Abstract: We consider a class of learning problems in which an agent liquidates a risky asset while creating both transient price impact driven by an unknown convolution propagator and linear temporary price impact with an unknown parameter. We characterize the trader's performance as maximization of a revenue-risk functional, where the trader also exploits available information on a price predicting signal. We present a trading algorithm that alternates between exploration and exploitation phases and achieves sublinear regrets with high probability. For the exploration phase we propose a novel approach for non-parametric estimation of the price impact kernel by observing only the visible price process and derive sharp bounds on the convergence rate, which are characterised by the singularity of the propagator. These kernel estimation methods extend existing methods from the area of Tikhonov regularisation for inverse problems and are of independent interest. The bound on the regret in the exploitation phase is obtained by deriving stability results for the optimizer and value function of the associated class of infinite-dimensional stochastic control problems. As a complementary result we propose a regression-based algorithm to estimate the conditional expectation of non-Markovian signals and derive its convergence rate.

Date: 2023-01, Revised 2025-01
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2301.05157 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2301.05157

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2301.05157