Dynamic CVaR Portfolio Construction with Attention-Powered Generative Factor Learning
Chuting Sun,
Qi Wu and
Xing Yan
Papers from arXiv.org
Abstract:
The dynamic portfolio construction problem requires dynamic modeling of the joint distribution of multivariate stock returns. To achieve this, we propose a dynamic generative factor model which uses random variable transformation as an implicit way of distribution modeling and relies on the Attention-GRU network for dynamic learning and forecasting. The proposed model captures the dynamic dependence among multivariate stock returns, especially focusing on the tail-side properties. We also propose a two-step iterative algorithm to train the model and then predict the time-varying model parameters, including the time-invariant tail parameters. At each investment date, we can easily simulate new samples from the learned generative model, and we further perform CVaR portfolio optimization with the simulated samples to form a dynamic portfolio strategy. The numerical experiment on stock data shows that our model leads to wiser investments that promise higher reward-risk ratios and present lower tail risks.
Date: 2023-01, Revised 2024-01
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2301.07318 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2301.07318
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().