EconPapers    
Economics at your fingertips  
 

Domain-adapted Learning and Interpretability: DRL for Gas Trading

Yuanrong Wang, Yinsen Miao, Alexander CY Wong, Nikita P Granger and Christian Michler

Papers from arXiv.org

Abstract: Deep Reinforcement Learning (Deep RL) has been explored for a number of applications in finance and stock trading. In this paper, we present a practical implementation of Deep RL for trading natural gas futures contracts. The Sharpe Ratio obtained exceeds benchmarks given by trend following and mean reversion strategies as well as results reported in literature. Moreover, we propose a simple but effective ensemble learning scheme for trading, which significantly improves performance through enhanced model stability and robustness as well as lower turnover and hence lower transaction cost. We discuss the resulting Deep RL strategy in terms of model explainability, trading frequency and risk measures.

Date: 2023-01, Revised 2023-09
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ene
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2301.08359 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2301.08359

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-27
Handle: RePEc:arx:papers:2301.08359