EconPapers    
Economics at your fingertips  
 

Quantum Monte Carlo algorithm for solving Black-Scholes PDEs for high-dimensional option pricing in finance and its complexity analysis

Jianjun Chen, Yongming Li and Ariel Neufeld

Papers from arXiv.org

Abstract: In this paper we provide a quantum Monte Carlo algorithm to solve high-dimensional Black-Scholes PDEs with correlation for high-dimensional option pricing. The payoff function of the option is of general form and is only required to be continuous and piece-wise affine (CPWA), which covers most of the relevant payoff functions used in finance. We provide a rigorous error analysis and complexity analysis of our algorithm. In particular, we prove that the computational complexity of our algorithm is bounded polynomially in the space dimension $d$ of the PDE and the reciprocal of the prescribed accuracy $\varepsilon$. Moreover, we show that for payoff functions which are bounded, our algorithm indeed has a speed-up compared to classical Monte Carlo methods. Furthermore, we provide numerical simulations in one and two dimensions using our developed package within the Qiskit framework tailored to price CPWA options with respect to the Black-Scholes model, as well as discuss the potential extension of the numerical simulations to arbitrary space dimension.

Date: 2023-01, Revised 2024-04
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://arxiv.org/pdf/2301.09241 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2301.09241

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2301.09241