EconPapers    
Economics at your fingertips  
 

Leveraging Vision-Language Models for Granular Market Change Prediction

Christopher Wimmer and Navid Rekabsaz

Papers from arXiv.org

Abstract: Predicting future direction of stock markets using the historical data has been a fundamental component in financial forecasting. This historical data contains the information of a stock in each specific time span, such as the opening, closing, lowest, and highest price. Leveraging this data, the future direction of the market is commonly predicted using various time-series models such as Long-Short Term Memory networks. This work proposes modeling and predicting market movements with a fundamentally new approach, namely by utilizing image and byte-based number representation of the stock data processed with the recently introduced Vision-Language models. We conduct a large set of experiments on the hourly stock data of the German share index and evaluate various architectures on stock price prediction using historical stock data. We conduct a comprehensive evaluation of the results with various metrics to accurately depict the actual performance of various approaches. Our evaluation results show that our novel approach based on representation of stock data as text (bytes) and image significantly outperforms strong deep learning-based baselines.

Date: 2023-01
New Economics Papers: this item is included in nep-big, nep-cmp and nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2301.10166 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2301.10166

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2301.10166