Aggregating heavy-tailed random vectors: from finite sums to L\'evy processes
Bikramjit Das and
Vicky Fasen-Hartmann
Papers from arXiv.org
Abstract:
The tail behavior of aggregates of heavy-tailed random vectors is known to be determined by the so-called principle of "one large jump'', be it for finite sums, random sums, or, L\'evy processes. We establish that, in fact, a more general principle is at play. Assuming that the random vectors are multivariate regularly varying on various subcones of the positive quadrant, first we show that their aggregates are also multivariate regularly varying on these subcones. This allows us to approximate certain tail probabilities which were rendered asymptotically negligible under classical regular variation, despite the "one large jump'' asymptotics. We also discover that depending on the structure of the tail event of concern, the tail behavior of the aggregates may be characterized by more than a single large jump. Eventually, we illustrate a similar phenomenon for multivariate regularly varying L\'evy processes, establishing as well a relationship between multivariate regular variation of a L\'evy process and multivariate regular variation of its L\'evy measure on different subcones.
Date: 2023-01
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2301.10423 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2301.10423
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().