EconPapers    
Economics at your fingertips  
 

Sequential Bayesian Learning for Hidden Semi-Markov Models

Patrick Aschermayr and Konstantinos Kalogeropoulos

Papers from arXiv.org

Abstract: In this paper, we explore the class of the Hidden Semi-Markov Model (HSMM), a flexible extension of the popular Hidden Markov Model (HMM) that allows the underlying stochastic process to be a semi-Markov chain. HSMMs are typically used less frequently than their basic HMM counterpart due to the increased computational challenges when evaluating the likelihood function. Moreover, while both models are sequential in nature, parameter estimation is mainly conducted via batch estimation methods. Thus, a major motivation of this paper is to provide methods to estimate HSMMs (1) in a computationally feasible time, (2) in an exact manner, i.e. only subject to Monte Carlo error, and (3) in a sequential setting. We provide and verify an efficient computational scheme for Bayesian parameter estimation on HSMMs. Additionally, we explore the performance of HSMMs on the VIX time series using Autoregressive (AR) models with hidden semi-Markov states and demonstrate how this algorithm can be used for regime switching, model selection and clustering purposes.

Date: 2023-01
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2301.10494 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2301.10494

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2301.10494