EconPapers    
Economics at your fingertips  
 

A Deep Neural Network Algorithm for Linear-Quadratic Portfolio Optimization with MGARCH and Small Transaction Costs

Andrew Papanicolaou, Hao Fu, Prashanth Krishnamurthy and Farshad Khorrami

Papers from arXiv.org

Abstract: We analyze a fixed-point algorithm for reinforcement learning (RL) of optimal portfolio mean-variance preferences in the setting of multivariate generalized autoregressive conditional-heteroskedasticity (MGARCH) with a small penalty on trading. A numerical solution is obtained using a neural network (NN) architecture within a recursive RL loop. A fixed-point theorem proves that NN approximation error has a big-oh bound that we can reduce by increasing the number of NN parameters. The functional form of the trading penalty has a parameter $\epsilon>0$ that controls the magnitude of transaction costs. When $\epsilon$ is small, we can implement an NN algorithm based on the expansion of the solution in powers of $\epsilon$. This expansion has a base term equal to a myopic solution with an explicit form, and a first-order correction term that we compute in the RL loop. Our expansion-based algorithm is stable, allows for fast computation, and outputs a solution that shows positive testing performance.

Date: 2023-01, Revised 2023-02
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2301.10869 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2301.10869

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2301.10869