Multidimensional dynamic factor models
Matteo Barigozzi and
Filippo Pellegrino
Papers from arXiv.org
Abstract:
This paper generalises dynamic factor models for multidimensional dependent data. In doing so, it develops an interpretable technique to study complex information sources ranging from repeated surveys with a varying number of respondents to panels of satellite images. We specialise our results to model microeconomic data on US households jointly with macroeconomic aggregates. This results in a powerful tool able to generate localised predictions, counterfactuals and impulse response functions for individual households, accounting for traditional time-series complexities depicted in the state-space literature. The model is also compatible with the growing focus of policymakers for real-time economic analysis as it is able to process observations online, while handling missing values and asynchronous data releases.
Date: 2023-01
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2301.12499 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2301.12499
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().