EconPapers    
Economics at your fingertips  
 

Can we infer microscopic financial information from the long memory in market-order flow?: a quantitative test of the Lillo-Mike-Farmer model

Yuki Sato and Kiyoshi Kanazawa

Papers from arXiv.org

Abstract: In financial markets, the market order sign exhibits strong persistence, widely known as the long-range correlation (LRC) of order flow; specifically, the sign correlation function displays long memory with power-law exponent $\gamma$, such that $C(\tau) \propto \tau^{-\gamma}$ for large time-lag $\tau$. One of the most promising microscopic hypotheses is the order-splitting behaviour at the level of individual traders. Indeed, Lillo, Mike, and Farmer (LMF) introduced in 2005 a simple microscopic model of order-splitting behaviour, which predicts that the macroscopic sign correlation is quantitatively associated with the microscopic distribution of metaorders. While this hypothesis has been a central issue of debate in econophysics, its direct quantitative validation has been missing because it requires large microscopic datasets with high resolution to observe the order-splitting behaviour of all individual traders. Here we present the first quantitative validation of this LFM prediction by analysing a large microscopic dataset in the Tokyo Stock Exchange market for more than nine years. On classifying all traders as either order-splitting traders or random traders as a statistical clustering, we directly measured the metaorder-length distributions $P(L)\propto L^{-\alpha-1}$ as the microscopic parameter of the LMF model and examined the theoretical prediction on the macroscopic order correlation: $\gamma \approx \alpha - 1$. We discover that the LMF prediction agrees with the actual data even at the quantitative level. Our work provides the first solid support of the microscopic model and solves directly a long-standing problem in the field of econophysics and market microstructure.

Date: 2023-01, Revised 2023-08
New Economics Papers: this item is included in nep-mst
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Published in Phys. Rev. Lett. 131, 197401 (2023)

Downloads: (external link)
http://arxiv.org/pdf/2301.13505 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2301.13505

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2301.13505