Penalized Quasi-likelihood Estimation and Model Selection in Time Series Models with Parameters on the Boundary
Heino Bohn Nielsen and
Anders Rahbek
Papers from arXiv.org
Abstract:
We extend the theory from Fan and Li (2001) on penalized likelihood-based estimation and model-selection to statistical and econometric models which allow for non-negativity constraints on some or all of the parameters, as well as time-series dependence. It differs from classic non-penalized likelihood estimation, where limiting distributions of likelihood-based estimators and test-statistics are non-standard, and depend on the unknown number of parameters on the boundary of the parameter space. Specifically, we establish that the joint model selection and estimation, results in standard asymptotic Gaussian distributed estimators. The results are applied to the rich class of autoregressive conditional heteroskedastic (ARCH) models for the modelling of time-varying volatility. We find from simulations that the penalized estimation and model-selection works surprisingly well even for a large number of parameters. A simple empirical illustration for stock-market returns data confirms the ability of the penalized estimation to select ARCH models which fit nicely the autocorrelation function, as well as confirms the stylized fact of long-memory in financial time series data.
Date: 2023-02
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2302.02867 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2302.02867
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().