Monotone Function Intervals: Theory and Applications
Kai Hao Yang and
Alexander K. Zentefis
Papers from arXiv.org
Abstract:
A monotone function interval is the set of monotone functions that lie pointwise between two fixed monotone functions. We characterize the set of extreme points of monotone function intervals and apply this to a number of economic settings. First, we leverage the main result to characterize the set of distributions of posterior quantiles that can be induced by a signal, with applications to political economy, Bayesian persuasion, and the psychology of judgment. Second, we combine our characterization with properties of convex optimization problems to unify and generalize seminal results in the literature on security design under adverse selection and moral hazard.
Date: 2023-02, Revised 2024-04
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/2302.03135 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2302.03135
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().