Individualized Treatment Allocation in Sequential Network Games
Toru Kitagawa and
Guanyi Wang
Papers from arXiv.org
Abstract:
Designing individualized allocation of treatments so as to maximize the equilibrium welfare of interacting agents has many policy-relevant applications. Focusing on sequential decision games of interacting agents, this paper develops a method to obtain optimal treatment assignment rules that maximize a social welfare criterion by evaluating stationary distributions of outcomes. Stationary distributions in sequential decision games are given by Gibbs distributions, which are difficult to optimize with respect to a treatment allocation due to analytical and computational complexity. We apply a variational approximation to the stationary distribution and optimize the approximated equilibrium welfare with respect to treatment allocation using a greedy optimization algorithm. We characterize the performance of the variational approximation, deriving a performance guarantee for the greedy optimization algorithm via a welfare regret bound. We implement our proposed method in simulation exercises and an empirical application using the Indian microfinance data (Banerjee et al., 2013), and show it delivers significant welfare gains.
Date: 2023-02, Revised 2024-07
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2302.05747 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2302.05747
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().