Reevaluating the Taylor Rule with Machine Learning
Alper Deniz Karakas
Papers from arXiv.org
Abstract:
This paper aims to reevaluate the Taylor Rule, through a linear and a nonlinear method, such that its estimated federal funds rates match those actually previously implemented by the Federal Reserve Bank. In the linear method, this paper uses an OLS regression model to find more accurate coefficients within the same Taylor Rule equation in which the dependent variable is the federal funds rate, and the independent variables are the inflation rate, the inflation gap, and the output gap. The intercept in the OLS regression model would capture the constant equilibrium target real interest rate set at 2. The linear OLS method suggests that the Taylor Rule overestimates the output gap and standalone inflation rate's coefficients for the Taylor Rule. The coefficients this paper suggests are shown in equation (2). In the nonlinear method, this paper uses a machine learning system in which the two inputs are the inflation rate and the output gap and the output is the federal funds rate. This system utilizes gradient descent error minimization to create a model that minimizes the error between the estimated federal funds rate and the actual previously implemented federal funds rate. Since the machine learning system allows the model to capture the more realistic nonlinear relationship between the variables, it significantly increases the estimation accuracy as a result. The actual and estimated federal funds rates are almost identical besides three recessions caused by bubble bursts, which the paper addresses in the concluding remarks. Overall, the first method provides theoretical insight while the second suggests a model with improved applicability.
Date: 2023-02
New Economics Papers: this item is included in nep-ban, nep-big, nep-cba, nep-cmp and nep-mon
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2302.08323 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2302.08323
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().