EconPapers    
Economics at your fingertips  
 

Post Reinforcement Learning Inference

Vasilis Syrgkanis and Ruohan Zhan

Papers from arXiv.org

Abstract: We consider estimation and inference using data collected from reinforcement learning algorithms. These algorithms, characterized by their adaptive experimentation, interact with individual units over multiple stages, dynamically adjusting their strategies based on previous interactions. Our goal is to evaluate a counterfactual policy post-data collection and estimate structural parameters, like dynamic treatment effects, which can be used for credit assignment and determining the effect of earlier actions on final outcomes. Such parameters of interest can be framed as solutions to moment equations, but not minimizers of a population loss function, leading to Z-estimation approaches for static data. However, in the adaptive data collection environment of reinforcement learning, where algorithms deploy nonstationary behavior policies, standard estimators do not achieve asymptotic normality due to the fluctuating variance. We propose a weighted Z-estimation approach with carefully designed adaptive weights to stabilize the time-varying estimation variance. We identify proper weighting schemes to restore the consistency and asymptotic normality of the weighted Z-estimators for target parameters, which allows for hypothesis testing and constructing uniform confidence regions. Primary applications include dynamic treatment effect estimation and dynamic off-policy evaluation.

Date: 2023-02, Revised 2024-05
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2302.08854 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2302.08854

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2302.08854